Code: 20EE2701A

IV B.Tech - I Semester – Regular / Supplementary Examinations OCTOBER 2024

NON-CONVENTIONAL ENERGY RESOURCES (Common for ALL BRANCHES)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

					3.6				
			BL	СО	Max.				
					Marks				
UNIT-I									
1	a)	Discuss the environmental impacts of solar	L3	CO3	7 M				
		power.							
	b)	Compare and contrast the conventional and	L3	CO2	7 M				
		non-conventional energy sources in detail.							
	OR								
2	a)	Illustrate the working principle of shading	L3	CO3	7 M				
		ring Pyrheliometer in detail to measure solar							
		radiation with neat sketch.							
	b)	Discuss the design of solar tracking	L3	CO3	7 M				
		mechanism to extract maximum solar							
		radiation on tilted surface with neat sketch.							
UNIT-II									
3	Dis	cuss the efficiency of solar cell with neat	L3	CO2	14 M				
	ske	tch and its equivalent electrical circuit.							
	l	Dago 1 of 2		I					

		OR						
4	Illu	strate the working principle of solar water	L3	CO3	14 M			
	coo	ling mechanism with neat sketch.						
	UNIT-III							
5	a)	Outline HAWT wind turbine and its	L4	CO4	7 M			
		working principle with neat block diagram.						
	b)	Analyze the performance characteristics of a	L4	CO5	7 M			
		wind mill.						
	OR							
6	a)	Compare and contrast HAWT and VAWT	L3	CO3	7 M			
		wind mills in various aspects.						
	b)	Classify the OTEC power plants and explain	L3	CO3	7 M			
		the working principle of open loop OTEC						
		with neat sketch.						
		UNIT-IV						
7	a)	Define anaerobic digestion and Illustrate	L3	CO3	7 M			
		about Batch type biogas plant with neat						
		sketch.						
	b)	Illustrate vapour dominated geothermal	L3	CO4	7 M			
		power plant with neat diagram.						
		OR						
8	Exp	plain the various methods to harvest	L3	CO3	14 M			
	geo	thermal energy from geothermal resources						
	witl	h neat sketch.						

UNIT-V								
9	Cor	npare and contrast open loop MHD and	L3	CO4	14 M			
	closed loop MHD in various aspects.							
OR								
10	a)	Discuss the working principle of fuel cell	L3	CO4	7 M			
		with neat sketch.						
	b)	Compare and contrast any two fuel cells in	L3	CO3	7 M			
		various aspects.						